Saturday, February 16, 2019

Physics of Downhill Skiing :: physics sport sports ski skiing

Skiing is a period of play enjoyed by millions of people around the world. The adrenaline burster that skiers get from firm crush the slopes is unmatched, but completely too often the cause for this rush is overlooked. Physics plays a crucial post in skiing and without it, on that point would definitely be no skiing. The concept of skiing is simple. You attach a ski to each foot, go to the top of a hill or incline, and slide down, turning side to side. From this basic concept of sliding down an inclined plane, a worldwide sport has evolved. In this paper, I consent you gain a useful knowledge of the vitally important role that physics plays in the sport of downhill skiing.m = mass of skierg = gravitational legionsa = accelerationmu = kinetic friction coefficient inertial Forces = (m)(a) Frictional Force = (mu)(m)(g)(cos theta) Graviational Force = (m)(g)(sin theta)Gravity is the force that holds the skier to the ground and is withal what pulls the skier down the hill. Whil e gravity is acting straight down on the skier, a formula force is exerted on the skier that opposes gravity. As the skier skis down the hill, he or she will encounter an acceleration. This acceleration is due to gravity caused by a change in the skiers velocity. The mass of a skier is different for both person and is easily calculated by multiplying a skiers weight in kilograms by the gravitational force exerted by the earth. These forces and more are explained throughout the rest of this paper.Gravity is a force that everybody is familiar with and is one of the simplest to understand. We all know that if you were to throw a ball in the air it would put across right back down. This force called gravity exerts a constant acceleration of 9.81 m/sec2 towards the center of the earth. Gravity is what pulls you down the hill. While gravity is universe exerted downward, a conventionalism force is being exerted on the skier opposing gravity. This normal force acts perpendicular to the earths surface, and in this case the mountain on which the skier is skiing. Lets enounce for instance the skier was on a flat surface, both gravity and the normal force would be acting on the skier but in reversal directions, thereby canceling each other out and resulting in no movement. thus far when a skier is on the mountain, the combination of gravity and the perpendicular normal force result in the skier being pulled down the mountain at the alike angle as the mountains slope.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.